INTRO TO GROUP REPS - JULY 2, 2012 **PROBLEM SET 4 RT4. CONSTRUCTIONS FROM LINEAR ALGEBRA**

1. Suppose (π, V) , (π', V') and (π'', V'') are representations of G. Suppose $L_1: V \to V'$ and $L_2: V' \to V''$ are equivalences. (a) Show that $L_1^{-1}: V' \to V$ is an equivalence.

(b) Show that $L_2 \circ L_1 : V \to V''$ is an equivalence.

2. Define an equivalence relation on representations of G by $(\pi, V) \sim (\pi', V')$ if and only if there exists an equivalence $L: V \to V'$.

(a) Show that \sim is an equivalence relation on representations.

(b) Repeat (a) for unitary equivalences and unitary representations.

(c) Show that Out(G) acts on equivalence classes of representations of G by the action $\sigma(\pi) = \pi \circ \sigma^{-1}.$

3. Let (π, V) and (π', V') be representations of G. Verify the following group actions of G (note that we should also verify linearity for each $\pi(q)$):

- (a) Direct sum $V \oplus V' : \pi_{\oplus}(g)(v, v') = (\pi(g)v, \pi'(g)v')$.
- (b) Dual space $V^*: \pi^*(g)v^*(w) = v^*(\pi(g^{-1})w),$
- (c) Linear transformations $Hom_{\mathbb{C}}(V, V') : [\sigma(g)L](v) = \pi'(g)[L(\pi(g^{-1})v)]$, and
- (d) Tensors $V \otimes V'$: on monomials, $(\pi \otimes \pi')(g)(v \otimes v') = \pi(g)v \otimes \pi'(g)v'$.

4. Suppose the π and π' in Problem 3 are also unitary. Verify that the following are also unitary; that is, check that the induced forms are inner products and that they are invariant under the group action:

- (a) Direct sum $V \oplus V'$: $\langle (v, v'), (w, w') \rangle = \langle v, w \rangle + \langle v', w' \rangle'$,
- (b) Dual space V^* : $\langle \langle \cdot, v \rangle, \langle \cdot, w \rangle \rangle_* = \langle w, v \rangle$,
- (c) Linear transformations $Hom_{\mathbb{C}}(V, V')$: $\langle L_1, L_2 \rangle = Tr(L_1L_2^*)$,
- (d) Tensors $V \otimes V'$: on monomials, $\langle v \otimes v', w \otimes w' \rangle = \langle v, w \rangle \langle v', w' \rangle'$.

5. (a) Let (π, V) be a representation of G. If f_1, f_2 are in V^* and c_1 in \mathbb{C} , show that $c_1f_1 + f_2$ is also in V^* .

Date: July 1, 2012.

(b) Let $B^* = \{e_1^*, e_2^*, e_3^*\}$ be the standard basis for $(\mathbb{C}^3)^*$. That is, $e_i^*(e_j) = 1$ if i = j and 0 otherwise. Using the permutation representation of S_3 on \mathbb{C}^3 , compute $\pi^*(g)e_1^*$ for all g is S_3 .

(c) In part (b), if L(x, y, z) = 2x + y - 2z, find a vector such that $L(v) = \langle v, w \rangle$ for all v in \mathbb{C}^3 . Compute $\pi^*(23)L$ and $\pi^*(123)L$, and verify that the length of L is unchanged.

6. Suppose (π, V) is unitary and (π, W) is a subrepresentation.

(a) Show that the orthogonal projection $P_W: V \to W$ is an intertwining operator,

(b) Show that V/W^{\perp} is equivalent to W as representations.

(c) If (π, \mathbb{C}^3) is the permutation representation of S_3 and W is the span of (1, 1, 1). Find P_W and $P_{W^{\perp}}$ explicitly, and verify the intertwining property.

7. Suppose (π, V) and (π', W) are representations of G.

(a) Verify that $L: V^* \otimes W \to Hom_{\mathbb{C}}(V, W)$ defined by extending

$$L(v^* \otimes w)(v') = v^*(v')w$$

is an equivalence of representations of G.

- (b) If the representations in (a) are unitary, verify that L is a unitary equivalence.
- (c) Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be the linear transformation defined by

T(x, y, z) = (2x + z, x + y, x - y - z).

Compute $\sigma(g)T$ for g = (23), (123) in S_3 using the permutation action on \mathbb{C}^3 .

8. Let (π, W) be the two-dimensional, irreducible, unitary representation of S_3 , where

$$W = \{(x, y, z) \mid x + y + z = 0\}$$

in \mathbb{C}^3 with the permutation action by S_3 . Consider the induced unitary representation on $W \otimes W$. Let

$$v_1 = (1, -1, 0), \quad v_2 = (1, 0, -1), \quad v_3 = (0, 1, -1).$$

We decompose $W \otimes W$ as an orthogonal direct sum of irreducibles

$$W = W_1 \oplus W_2 \oplus W_3.$$

Show that

(a) $W_1 = \mathbb{C}(v_1 \otimes v_2 - v_2 \otimes v_1)$ is a subrepresentation and is equivalent to the sgn representation of S_3 ,

(b) $W_2 = \mathbb{C}(v_1 \otimes v_1 + v_2 \otimes v_2 + v_3 \otimes v_3)$ is a subrepresentation and is equivalent to the trivial representation of S_3 ,

(c) $W_3 = Span_{\mathbb{C}}(v_1 \otimes v_1 - v_2 \otimes v_2, v_2 \otimes v_2 - v_3 \otimes v_3)$ is a subrepresentation and equivalent to the irreducible two-dimensional representation of S_3 ,

(e) let B be the basis of $W \otimes W$ using the vectors from (a)-(c). Find $[\pi \otimes \pi(g)]_B$ for g = (23), (123). (To get a unitary matrix, we need to use an orthonormal basis.)

9. In Problem 8, express each tensor in terms of the standard basis $B = \{e_i \otimes e_j\}$ for $\mathbb{C}^3 \otimes \mathbb{C}^3$, and recheck the subrepresentation and orthogonal properties.

10. Let (π, \mathbb{C}^2) be the irreducible two-dimensional representation of D_8 . Show that $\chi_i \otimes \pi$ is equivalent to π for each character χ_i of D_8 . Also show that π is equivalent to π^* .