INTRO TO GROUP REPS - JULY 16, 2012 PROBLEM SET 6 RT6. FUNCTION SPACES

1. Suppose σ be a group action of G on a finite set X. Let V be a vector space with basis $B = \{e_x \mid x \in X\}$. We define a representation (π, V) by

$$\pi(g)\sum_{x\in X}c_xe_x=\sum c_xe_{\sigma(g)x}.$$

(a) Show that $\pi(g)$ is a permutation matrix with respect to the basis B. That is, $\pi(g)$ has all zero entries save for one 1 in each row and column.

(b) Show that (π, V) is unitary with respect to the Hermitian inner product

$$\langle v, w \rangle = \sum_{x \in X} c_x \overline{d_x}$$

if $v = \sum c_x e_x$ and $w = \sum d_x e_x$.

(c) Show that the trivial representation occurs in V with multiplicity equal to the number of orbits in X.

(d) Show that (π^*, V^*) is equivalent to $(L, L^2(X))$, where $L^2(X)$ is the inner product space of functions on X.

(e) Show that $\chi_{\pi}(g)$ is equal to the number of x in X that are fixed points for $\sigma(g)$. That is, $\chi_{\pi}(g)$ is the number of x in X such that $\sigma(g)x = x$. See Problem 8 for the definition of χ_{π} .

2. Let $G = X = \{\pm 1\}$ and let $L^2(G)$ be the vector space of functions from G to \mathbb{C} . Let G act on $L^2(G)$ by left translation: $[L(g)f](x) = f(g^{-1}x)$, and we define an invariant Hermitian inner product on $L^2(G)$ by

$$\langle f,h\rangle = \frac{1}{2}[f(1)\overline{h(1)} + f(-1)\overline{h(-1)}].$$

(a) Verify that $(L, L^2(G))$ is a unitary representation.

(b) Verify that $B = \{\chi_{triv}, \chi_{sgn}\}$ is an orthonormal basis for $L^2(G)$. The χ 's are the characters of G from SS1, Problem 8(a).

(c) Show that

$$[P_{triv}f](x) = \frac{1}{2}(f(x) + f(-x)) = \langle f, \chi_{triv} \rangle \chi_{triv}(x)$$

Date: July 16, 2012.

and

$$[P_{sgn}f](x) = \frac{1}{2}(f(x) - f(-x)) = \langle f, \chi_{sgn} \rangle \chi_{sgn}(x)$$

are orthogonal projections.

(d) Let f(1) = 3, f(-1) = -4. Decompose using (c), and also apply Fourier's Trick and Parseval's Identity to f with respect to the basis in (b).

3. Let $X = \{1, 2, 3, 4\}$ and consider the permutation representation π of D_8 on $L^2(X) \cong (\mathbb{C}^4)^*$; that is, realize D_8 as a subgroup of S_4 using r = (1234) and c = (14)(23). Decompose $L^2(X)$ into irreducible subrepresentations, and verify that they are orthogonal with respect to the invariant inner product on $L^2(X)$. (Hint: SS1, Problems 3(a) and 10(b))

4. Suppose $F : \mathbb{R} \to \mathbb{C}$ is piecewise continuous; that is, F(t) = f(t) + ig(t) with $f, g : \mathbb{R} \to \mathbb{R}$ piecewise continuous. We define $\int F(t)dt = \int f(t)dt + i \int g(t)dt$ if all terms make sense.

We define $C_p(S^1)$ as the space of piecewise continuous functions $F : \mathbb{R} \to \mathbb{C}$ that are periodic of period 2π ; that is,

$$F(t+2\pi) = F(t).$$

Here $G = S^1$, the circle group, represented here as the quotient group $\mathbb{R}/2\pi\mathbb{Z}$. We let t' in S^1 act on $C_p(S^1)$ by

$$[L(t')F](t) = F(t - t').$$

Furthermore, we define a Hermitian inner product on $C_p(S^1)$ by

$$\langle f,h\rangle = \int_0^{2\pi} f(t)\overline{h(t)}dt$$

(a) Show that $\langle \cdot, \cdot \rangle$ is a Hermitian inner product, and that $(L, C_p(S^1))$ is a unitary representation of S^1 . (Ignore any analytic issues.)

(b) Show that the span of $F_n(t) = e^{int}$ is a subrepresentation of L of type χ_{-n} (resp. of R of type χ_n).

(c) Show that $B = \{F_n\}$ forms an orthonormal set, where $n \in \mathbb{Z}$. (In fact, B is a Hilbert basis for $L^2(S^1)$, but we assume no analysis.)

5. (a) Assuming B is an orthonormal "basis" in Problem 3, apply Fourier's Trick to the square wave function (extended periodically)

$$F(t) = \begin{cases} -1 & -\pi < t < 0\\ 1 & 0 < t < \pi \end{cases};$$

that is, represent F(t) by a Fourier series $\sum c_n F_n(t)$ with $c_n = \langle F, F_n \rangle$.

(b) Apply Parseval's Identity to part (a).

 $\mathbf{2}$

(c) Use part (b) to prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Verify by summing the first 10, 100, 500, 750 terms.

6. We define the trace of a square matrix A as the sum of its diagonal entries. With respect to the standard inner product on \mathbb{C}^n ,

$$Trace(A) = \sum_{i} \langle Ae_i, e_i \rangle.$$

In fact, this formula holds with any orthonormal basis. In general, if $B = \{u_i\}$ is a basis for V and $B^* = \{u_i^*\}$ is the corresponding dual basis, then the trace of a linear transformation $T: V \to V$ is given as

$$Trace(T) = \sum_{i} u_i^*(Tu_i).$$

- (a) Using induction, prove that Trace(AB) = Trace(BA) with A and B square matrices.
- (b) Find a counterexample to Trace(ABC) = Trace(ACB). Note that, by (a),

Trace(ABC) = Trace((BC)A) = Trace(C(AB)).

7. (a) Show that $Trace(PAP^{-1}) = Trace(A)$. Use this to show that Trace(T) is welldefined; that is, Trace(T) is independent of the basis chosen.

(b) If A is diagonalizable, show that Trace(A) is the sum of the eigenvalues of A, counting multiplicities.

(c) If $p_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ is the characteristic polynomial of A, show that $Trace(A) = -a_{n-1}.$

(d) Not assuming diagonalizability, use (c) to show that Trace(A) is the sum of the eigenvalues of A, counting multiplicities.

8. Let (π, V) and (π', V') be representations of G. The character of π , denoted $\chi_{\pi} : G \to \mathbb{C}$, is defined by $\chi_{\pi}(g) = Trace(\pi(g)).$

(a) Show that $\chi_{\pi}(e)$ is the dimension of V.

(b) If π and π' are equivalent, show that $\chi_{\pi} = \chi_{\pi'}$ are equal. (The converse is true; we prove it later.) Also show that χ_{π} is constant on conjugacy classes of G.

(c) Show that $\chi_{\pi}(g^{-1}) = \overline{\chi_{\pi}(g)}$.

(d) Show that

- (1) $\chi_{\pi \oplus \pi'} = \chi_{\pi} + \chi_{\pi'},$ (2) $\chi_{\pi^*} = \overline{\chi_{\pi}},$ and

(3) $\chi_{\pi\otimes\pi'} = \chi_{\pi}\cdot\chi_{\pi'}.$

9. Let $G = A_4$, the alternating group on 4 letters, and consider the representation (π, \mathbb{C}^3) induced by rigid motions of a tetrahedron centered at the origin of \mathbb{R}^3 .

(a) Find all conjugacy classes of A_4 . We have three characters. How many irreducible classes remain, and what is their dimension?

(b) Find $\chi_{\pi}(g)$ for each g by finding the eigenvalues of each symmetry by observation and sum. Show that χ_{π} is orthogonal to each character in $L^2(A_4)$.

(c) To describe π on \mathbb{R}^3 , we first identify the tetrahedron in a cube with vertices at $(\pm 1, \pm 1, \pm 1, \pm 1)$. Let

$$v_1 = (1, 1, 1), \quad v_2 = (-1, -1, 1), \quad v_3 = (1, -1, -1), \quad v_4 = (-1, 1, -1)$$

be the vertices of a tetrahedron centered at the origin. If B is the standard basis of \mathbb{R}^3 , find $[\pi(g)]_B$ for g = (12)(34), (123) and verify part (b).

- (d) Show that the representation in (c) is irreducible.
- (e) Set up the (trace) character table of A_4 and verify orthonormality of the rows.

10. Let c be the group action of G on G by conjugation; that is, $c(g)(x) = gxg^{-1}$. Let Class(G) be the subspace of $L^2(G)$ on which conjugation acts trivially. That is, f is in Class(G) if and only if

$$f(gxg^{-1}) = f(x)$$
 for all $g, x \in G$.

(a) If f is in Class(G), show that f(gx) = f(xg).

(b) If f is in $L^2(G)$, show that

$$(Af)(x) = \frac{1}{|G|} \sum_{g} f(gxg^{-1})$$

is in Class(G).

(c) Find an orthonormal basis for Class(G) in terms of the conjugacy classes of G. See Problem 1(c).

(d) If (π, V) is a representation of G, show that χ_{π} is in Class(G).

(e) Compare (c) and (d) for $G = S_3$, D_8 , Q, and A_4 . What if G is abelian? Conjecture for non-abelian?

4