INTRO TO REP THEORY - JUNE 18, 2012
SOLUTION SET 2
RT2. UNITARY REPRESENTATIONS

1. (a) This is a straight-forward check using the definitions.

(b) First check that (Lw)* = w*L*; note that this can be separated into n row-column
products. Also note that (L*)* = L. Then we have that

(Lv,w) = w*(Lv) = w*(L*)*v = (L*w)*v = (v, L*w).
(c) For v,w in C",

<L1L2U7w> = <L2U,L>{’LU> = <U7L§ Tw>
But this expression also equals (v, (L1L2)*w), so (L1L9)* = L3L7.
Just in case: if (Av, w) = (Bv,w) for all v,w in C", then A = B. Subtracting gives the
equivalent statement: if (Xv,w) = 0 for all v,w in C", then X = 0. To show this note that

the (i,j)-th entry of X is equal to (Xej,e;). (Note the reversed order; verify with your
favorite 2 X 2 matrix.)

2. (a) Noting to conjugate the second vector:

W) 2 = UVE- 1V +i/VE-—i/VE =1,

(2) ||v2|?=1/v2-1/V2+ —i/V2-i/V/2 =1, and
(3) (vi,v2) =1/V/2-1/v/2+1i/vV2-i/V/2=0.

(b) Again
1

(1) ¢1 = (v,v1) =i-1/v2+i-—i/vV2=(1+1)/V?2, and
(2) ¢ <,z>=i-1/ﬂ+z’-z’/ﬂ=(—1+z’)/\/§.
Now
L f1NVR] L[R2 i .
e+ = 5 [+ = 0] = [i] =+
and
P +lePf=1+1=2; |p|f=1+1=2.

3. We find the parallel direction first and then subtract it off v to get the orthogonal

direction. For the parallel direction, we use the formula v = 223

u.
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Here u = (1 + 14, —i). and v = (2,). Substitution gives ||u||* = 3 and (v,u) = 1 — 2i. So
v =1-4/3,-2/3—1/3) and vy =v—v=(1+1/3,2/3+4i/3).
Immediately v = v)| + v and one has that
(v, ve) = (1—1/3)- (1 —4/3) +(-2/3—1i/3)-(2/3 —4i/3) =8/9—2i/3 - 8/9+6i/9 = 0.

4. (a) (1) is equivalent to (2): First, if U is unitary,

(Uv,Uw) = (v, U Tw) = (v, Iw) = (v,w).
Conversely, if (Uv, Uw) = (v, w) for all v, w, then (v, (U*U — I)w) = 0 for all v, w, which
we have seen above means that U*U — I = 0 or U*U = I. Thus U* = U~ and UU* =T
also.

(1) is equivalent to (3): rewrite all row-column products in U*U = I, and

(1) is equivalent to (4): rewrite all row-column products in UU* = I.

(b) We verify the subgroup properties: suppose A, B in U(n).
(1) Closure: AB(AB)* = ABB*A* = AIA* =1,
(2) Inverses: since [ = AA™L [ = (A71)*A* = (A"1)*A~L. Thus A~!is in U(n),
(3) Nonempty: the identity matrix I satisfies I7* = I.
If Aisin O(n), then ATA = I. Since A has real entries, AT = A* and A*A = I.

(c) We verify the subgroup properties: suppose A, B in SU(n).
(1) Closure: AB is in U(n) and det(AB) = det(A)det(B) = 1,
(2) Inverses: A~!isin U(n) and det(A™1) = 1/det(A) = 1,
(3) Nonempty: the identity matrix [ is in U(n) and det(I) = 1.
For the normal property, if g is in U(n) and A is in SU(n), then gAg~! is in U(n) and
det(gAg™') = det(A) = 1.

5. (a) Let v be an (nonzero) eigenvector with eigenvalue A. Then
Mv,v) = (Xv,v) = (v, Xv) = Av,v).
Since (v,v) >0, A=\, and )\ is real.
(b) Let v (resp. w) be an (nonzero) eigenvector with eigenvalue A (resp. p). Then
Mo, w) = (Xv,w) = (v, Xw) = (v, w).
Since p is real, (A — p)(v,w) = 0, and, since A # p, (v,w) = 0.

(c) We show that if v is in W+ then Xv is also in W+. That is, if (v,w) = 0 for all w
in W, then (Xv,w) =0 for all w in W also. Now if w is in W, then invariance means that
Xw is in W and

(Xv,w) = (v, Xw) =0
since v is in W+.
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(d) We proceed by induction on the dimension of V. If V' has dimension one, then
Hermitian means X is a real scalar and we get an orthonormal basis by choosing a unit
vector in V.

For the induction step, suppose the result is true when the dimension is less than n
and that the dimension of V is less than n 4+ 1. By part (a), there exists at least one
real eigenvalue with unit eigenvector v. Let W be the span of v. Since W is invariant
under X, so W+ is invariant under X also by (c). This means X : W+ — W+, Since the
Hermitian condition holds on W+, the induction hypothesis is satisfied, and we can find an
orthonormal basis B of W+ consisting of eigenvectors with real eigenvalues. Now B U {v}
is the basis that we seek for V.

(e) First px(x) = det(xl — X) = 2> — 1, so X has eigenvalues +1. If A = 1, then

-1 1 1 —
Null(X—I)—Null[_Z. _J—Null [0 O}

Thus v; = (1/v/2, —i/+/2) is an unit eigenvector with eigenvalue 1.

Let’s find a unit eigenvector for A = —1 indirectly. We have Xv; = v1, so conjugating
both sides of the equation gives X717 = 77. But X = — X, so Xv1 = —v71. Thus

vy =11 = (1/V2,i/V2)

is a unit eigenvector with eigenvalue —1. Note that (vi,ve) = 0, confirming (b).

We define P = [vjv2], and the diagonalization formula states that [1 0

—_ p—1
0 1]13 XP.

6. (a) Let v be an (nonzero) eigenvector with eigenvalue A\. Then
M (v,v) = (Uv,Uv) = (v, U*Uv) = (v, v).
Since (v,v) >0, |A| = 1.
(b) Let v (resp. w) be an (nonzero) eigenvector with eigenvalue A (resp. p). Then
Mi(v, w) = (Uv, Uw) = (v, U Uw) = (v,w).
Thus (A — 1)(v,w) = 0, and, since A # u, (v,w) = 0.

(c) Since A is invertible, A~! exists. Since W is invariant under A, then A sends W to
W isomorphically, and A~! carries W to W. That is, if Av = w then A~ w = v. Thus W
is invariant under A1

If U is unitary, then U* = U~! and we adapt the argument of Problem 5(c).
(d) Same proof as Problem 5(d) with appropriate adjustments.
(e) First py(z) = det(xI — U) = 22 + 1, so U has eigenvalues +i. If A = i, then

. —i i 1 -1
Null(X—zI)—Null[i .]—Null [o 0}.
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Thus v; = (1/v/2,1/4/2) is an unit eigenvector with eigenvalue .

One sees that the trick in Problem 5(e) does not apply since v; is real. Instead we expect
the remaining eigenspace to be orthogonal to vy, so we let v = (1/v/2, —1/+/2) and verify
the characteristic equation Avy = —ivy directly.

7. We see that A has eigenvalues 2 and —4 with unit eigenvectors
v = (V2/2,v/2/2) and vy = (V2/2,—V2/2)

respectively. Let P = [v; va]. Then

2 0] o
D_[O _4]_P AP.

For the projection P, onto Fo = Cv1, we have

[(1) 8] =P 'PP or P,=P [é 8] pP1= Eg i@ .

For the other eigenspace F_4, a similar computation gives P_4, = [

1/2 —1/2]
—1/2 1/2 |

The verifications for the P’s are straightforward.
We have that Pee; = (1/2,1/2) and P_ge; = (1/2,-1/2).
We also have Ae; = (—1,3) =2(1/2,1/2) + (—4)(1/2,—-1/2).

8. (a) m(k)m(l) = AF - A = AFH = 7 (k +1).

(b) (1) if A is diagonalizable, then the A¥ commute and are simultaneously diagonal-
izable. Thus there exists a basis in which m maps to powers of a diagonal matrix with
non-zero diagonal entries.

(2) A is diagonalizable with real eigenvalues, so same as (1) with real entries, and
(3) A is diagonalizable with unit eigenvalues, so same as (1) with unit diagonal entries,

If the kernel of 7 is nontrivial, then 7 quotients to a representation of Z/n and each
m(g)™ = 1. Since p(x) = 2™ — 1 has distinct roots, the minimal polynomial of 7(g) factors
into distinct linear factors, and 7(g) is diagonalizable. Since the eigenvalues have |A| = 1,
(1) and (3) hold.

9. (a) With respect to the standard basis, 7(r) = [2 _01} and 7(c) = [(1) _01] . Since

Dsg is generated by r and ¢, and the product of unitary matrices is unitary, each 7(g) is
unitary.

If there were a one-dimensional subrepresentation spanned by (z,y), then

7[-(9)(1:’ y) = )‘g(l'ay)
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for some scalar A,. Since 7(c)? = I, Ac = £1 and (z,y) is zero or an eigenvector for 7(c).
That is, either a multiple of e; or es if nonzero. Since m(r)e; = —ey and 7(r)es = e1, we
must have z =y = 0.

(b) m(c) is diagonal, so By = {e1, ea}.

Since m(r)? = —I, the eigenvalues of 7(r) are +i with associated unit eigenvectors

(1/V2,~i/V2) and (1/v2,i//2).

10. (a) Same as Problem 9(a), but 7(r) = [_1/2 _\/3/2] .

V3/2  —1/2

(b) m(c) is diagonal, so By = {e1, ea}.

Since 7(r)3 = I but 1 is not an eigenvalue (no fixed vectors), the eigenvalues are w and
w?, where w = €%7/3. Noting that w = —% + @i, one finds associated unit eigenvectors

(1/v/2,~i/V2) and (1/v/2.i/V2).

1

11. (a) Since 7(1,0) = [0

_OJ , we see that

(e1,e2)1 = (Xer,e2) = 1,
but
(m(1,0)e1,m(1,0)e2); = (X7(1,0)er,7(1,0)e) = —1.
Thus (-, -)1 is not invariant under G.

We compute each 7(g)* X7 (g): we have

7(0,0) =1, m(1,0)= [(1) _01] , w(0,1)=—~1I, =(1,1)= hl ﬂ ,

N izg:w(g)*xw(g) =X+ [21 _21} + X+ [21 _21} =2I.

Since (-, -) is invariant under G, so is (-, -)2.

(b) The first part holds since 7(2) = [1 0

0 _1] also. We compute each 7(g)* X7 (g):

—1 1

izg:ﬂ(g)*)m(g) =X+ [_22 ;} + [_21 _21} n B —2@} _oJ.

Since (-, -) is invariant under G, so is (-, -)2.

7(0) = I, 77(1):[‘01 0}, 77(2):[(1) _OJ 7r(3):[_01 Q],

SO



