
INTRO TO REP THEORY - JUNE 18, 2012

SOLUTION SET 2

RT2. UNITARY REPRESENTATIONS

1. (a) This is a straight-forward check using the definitions.

(b) First check that (Lw)∗ = w∗L∗; note that this can be separated into n row-column
products. Also note that (L∗)∗ = L. Then we have that

〈Lv,w〉 = w∗(Lv) = w∗(L∗)∗v = (L∗w)∗v = 〈v, L∗w〉.

(c) For v, w in Cn,

〈L1L2v, w〉 = 〈L2v, L
∗
1w〉 = 〈v, L∗2L∗1w〉.

But this expression also equals 〈v, (L1L2)
∗w〉, so (L1L2)

∗ = L∗2L
∗
1.

Just in case: if 〈Av,w〉 = 〈Bv,w〉 for all v, w in Cn, then A = B. Subtracting gives the
equivalent statement: if 〈Xv,w〉 = 0 for all v, w in Cn, then X = 0. To show this note that
the (i, j)-th entry of X is equal to 〈Xej , ei〉. (Note the reversed order; verify with your
favorite 2× 2 matrix.)

2. (a) Noting to conjugate the second vector:

(1) ||v1||2 = 1/
√

2 · 1/
√

2 + i/
√

2 · −i/
√

2 = 1,
(2) ||v2||2 = 1/

√
2 · 1/

√
2 +−i/

√
2 · i/

√
2 = 1, and

(3) 〈v1, v2〉 = 1/
√

2 · 1/
√

2 + i/
√

2 · i/
√

2 = 0.

(b) Again

(1) c1 = 〈v, v1〉 = i · 1/
√

2 + i · −i/
√

2 = (1 + i)/
√

2, and
(2) c2 = 〈v, v2〉 = i · 1/

√
2 + i · i/

√
2 = (−1 + i)/

√
2.

Now

c1v1 + c2v2 =
1 + i√

2

[
1/
√

2

i/
√

2

]
+
−1 + i√

2

[
1/
√

2

−i/
√

2

]
=

[
i
i

]
= v,

and

|c1|2 + |c2|2 = 1 + 1 = 2; ||v||2 = 1 + 1 = 2.

3. We find the parallel direction first and then subtract it off v to get the orthogonal

direction. For the parallel direction, we use the formula v|| =
〈v,u〉
〈u,u〉u.
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2 PROBLEM SET 2 - RT2. UNITARY REPRESENTATIONS

Here u = (1 + i,−i). and v = (2, i). Substitution gives ||u||2 = 3 and 〈v, u〉 = 1− 2i. So

v|| = (1− i/3,−2/3− i/3) and v⊥ = v − v|| = (1 + i/3, 2/3 + 4i/3).

Immediately v = v|| + v⊥ and one has that

〈v||, v⊥〉 = (1− i/3) · (1− i/3) + (−2/3− i/3) · (2/3− 4i/3) = 8/9− 2i/3− 8/9 + 6i/9 = 0.

4. (a) (1) is equivalent to (2): First, if U is unitary,

〈Uv,Uw〉 = 〈v, U∗Uw〉 = 〈v, Iw〉 = 〈v, w〉.
Conversely, if 〈Uv,Uw〉 = 〈v, w〉 for all v, w, then 〈v, (U∗U − I)w〉 = 0 for all v, w, which
we have seen above means that U∗U − I = 0 or U∗U = I. Thus U∗ = U−1 and UU∗ = I
also.

(1) is equivalent to (3): rewrite all row-column products in U∗U = I, and

(1) is equivalent to (4): rewrite all row-column products in UU∗ = I.

(b) We verify the subgroup properties: suppose A,B in U(n).

(1) Closure: AB(AB)∗ = ABB∗A∗ = AIA∗ = I,
(2) Inverses: since I = AA−1, I = (A−1)∗A∗ = (A−1)∗A−1. Thus A−1 is in U(n),
(3) Nonempty: the identity matrix I satisfies II∗ = I.

If A is in O(n), then ATA = I. Since A has real entries, AT = A∗ and A∗A = I.

(c) We verify the subgroup properties: suppose A,B in SU(n).

(1) Closure: AB is in U(n) and det(AB) = det(A)det(B) = 1,
(2) Inverses: A−1 is in U(n) and det(A−1) = 1/det(A) = 1,
(3) Nonempty: the identity matrix I is in U(n) and det(I) = 1.

For the normal property, if g is in U(n) and A is in SU(n), then gAg−1 is in U(n) and
det(gAg−1) = det(A) = 1.

5. (a) Let v be an (nonzero) eigenvector with eigenvalue λ. Then

λ〈v, v〉 = 〈Xv, v〉 = 〈v,Xv〉 = λ〈v, v〉.
Since 〈v, v〉 > 0, λ = λ, and λ is real.

(b) Let v (resp. w) be an (nonzero) eigenvector with eigenvalue λ (resp. µ). Then

λ〈v, w〉 = 〈Xv,w〉 = 〈v,Xw〉 = µ〈v, w〉.
Since µ is real, (λ− µ)〈v, w〉 = 0, and, since λ 6= µ, 〈v, w〉 = 0.

(c) We show that if v is in W⊥ then Xv is also in W⊥. That is, if 〈v, w〉 = 0 for all w
in W , then 〈Xv,w〉 = 0 for all w in W also. Now if w is in W, then invariance means that
Xw is in W and

〈Xv,w〉 = 〈v,Xw〉 = 0

since v is in W⊥.
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(d) We proceed by induction on the dimension of V . If V has dimension one, then
Hermitian means X is a real scalar and we get an orthonormal basis by choosing a unit
vector in V.

For the induction step, suppose the result is true when the dimension is less than n
and that the dimension of V is less than n + 1. By part (a), there exists at least one
real eigenvalue with unit eigenvector v. Let W be the span of v. Since W is invariant
under X, so W⊥ is invariant under X also by (c). This means X : W⊥ → W⊥. Since the
Hermitian condition holds on W⊥, the induction hypothesis is satisfied, and we can find an
orthonormal basis B of W⊥ consisting of eigenvectors with real eigenvalues. Now B ∪ {v}
is the basis that we seek for V .

(e) First pX(x) = det(xI −X) = x2 − 1, so X has eigenvalues ±1. If λ = 1, then

Null(X − I) = Null

[
−1 i
−i −1

]
= Null

[
1 −i
0 0

]
.

Thus v1 = (1/
√

2,−i/
√

2) is an unit eigenvector with eigenvalue 1.

Let’s find a unit eigenvector for λ = −1 indirectly. We have Xv1 = v1, so conjugating
both sides of the equation gives Xv1 = v1. But X = −X, so Xv1 = −v1. Thus

v2 = v1 = (1/
√

2, i/
√

2)

is a unit eigenvector with eigenvalue −1. Note that 〈v1, v2〉 = 0, confirming (b).

We define P = [v1v2], and the diagonalization formula states that

[
1 0
0 −1

]
= P−1XP.

6. (a) Let v be an (nonzero) eigenvector with eigenvalue λ. Then

λλ〈v, v〉 = 〈Uv,Uv〉 = 〈v, U∗Uv〉 = 〈v, v〉.

Since 〈v, v〉 > 0, |λ| = 1.

(b) Let v (resp. w) be an (nonzero) eigenvector with eigenvalue λ (resp. µ). Then

λµ〈v, w〉 = 〈Uv,Uw〉 = 〈v, U∗Uw〉 = 〈v, w〉.

Thus (λµ− 1)〈v, w〉 = 0, and, since λ 6= µ, 〈v, w〉 = 0.

(c) Since A is invertible, A−1 exists. Since W is invariant under A, then A sends W to
W isomorphically, and A−1 carries W to W . That is, if Av = w then A−1w = v. Thus W
is invariant under A−1.

If U is unitary, then U∗ = U−1 and we adapt the argument of Problem 5(c).

(d) Same proof as Problem 5(d) with appropriate adjustments.

(e) First pU (x) = det(xI − U) = x2 + 1, so U has eigenvalues ±i. If λ = i, then

Null(X − iI) = Null

[
−i i
i −i

]
= Null

[
1 −1
0 0

]
.
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Thus v1 = (1/
√

2, 1/
√

2) is an unit eigenvector with eigenvalue i.

One sees that the trick in Problem 5(e) does not apply since v1 is real. Instead we expect
the remaining eigenspace to be orthogonal to v1, so we let v2 = (1/

√
2,−1/

√
2) and verify

the characteristic equation Av2 = −iv2 directly.

7. We see that A has eigenvalues 2 and −4 with unit eigenvectors

v1 = (
√

2/2,
√

2/2) and v2 = (
√

2/2,−
√

2/2)

respectively. Let P = [v1 v2]. Then

D =

[
2 0
0 −4

]
= P−1AP.

For the projection P2 onto E2 = Cv1, we have[
1 0
0 0

]
= P−1P2P or P2 = P

[
1 0
0 0

]
P−1 =

[
1/2 1/2
1/2 1/2

]
.

For the other eigenspace E−4, a similar computation gives P−4 =

[
1/2 −1/2
−1/2 1/2

]
.

The verifications for the P ’s are straightforward.

We have that P2e1 = (1/2, 1/2) and P−4e1 = (1/2,−1/2).

We also have Ae1 = (−1, 3) = 2(1/2, 1/2) + (−4)(1/2,−1/2).

8. (a) π(k)π(l) = Ak ·Al = Ak+l = π(k + l).

(b) (1) if A is diagonalizable, then the Ak commute and are simultaneously diagonal-
izable. Thus there exists a basis in which π maps to powers of a diagonal matrix with
non-zero diagonal entries.

(2) A is diagonalizable with real eigenvalues, so same as (1) with real entries, and

(3) A is diagonalizable with unit eigenvalues, so same as (1) with unit diagonal entries,

If the kernel of π is nontrivial, then π quotients to a representation of Z/n and each
π(g)n = I. Since p(x) = xn − 1 has distinct roots, the minimal polynomial of π(g) factors
into distinct linear factors, and π(g) is diagonalizable. Since the eigenvalues have |λ| = 1,
(1) and (3) hold.

9. (a) With respect to the standard basis, π(r) =

[
0 −1
1 0

]
and π(c) =

[
1 0
0 −1

]
. Since

D8 is generated by r and c, and the product of unitary matrices is unitary, each π(g) is
unitary.

If there were a one-dimensional subrepresentation spanned by (x, y), then

π(g)(x, y) = λg(x, y)
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for some scalar λg. Since π(c)2 = I, λc = ±1 and (x, y) is zero or an eigenvector for π(c).
That is, either a multiple of e1 or e2 if nonzero. Since π(r)e1 = −e2 and π(r)e2 = e1, we
must have x = y = 0.

(b) π(c) is diagonal, so B1 = {e1, e2}.
Since π(r)2 = −I, the eigenvalues of π(r) are ±i with associated unit eigenvectors

(1/
√

2,−i/
√

2) and (1/
√

2, i/
√

2).

10. (a) Same as Problem 9(a), but π(r) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
.

(b) π(c) is diagonal, so B1 = {e1, e2}.
Since π(r)3 = I but 1 is not an eigenvalue (no fixed vectors), the eigenvalues are ω and

ω2, where ω = e2iπ/3. Noting that ω = −1
2 +

√
3
2 i, one finds associated unit eigenvectors

(1/
√

2,−i/
√

2) and (1/
√

2, i/
√

2).

11. (a) Since π(1, 0) =

[
1 0
0 −1

]
, we see that

〈e1, e2〉1 = 〈Xe1, e2〉 = 1,

but
〈π(1, 0)e1, π(1, 0)e2〉1 = 〈Xπ(1, 0)e1, π(1, 0)e2〉 = −1.

Thus 〈·, ·〉1 is not invariant under G.

We compute each π(g)∗Xπ(g): we have

π(0, 0) = I, π(1, 0) =

[
1 0
0 −1

]
, π(0, 1) = −I, π(1, 1) =

[
−1 0
0 1

]
,

so
1

4

∑
g

π(g)∗Xπ(g) = X +

[
2 −1
−1 2

]
+X +

[
2 −1
−1 2

]
= 2I.

Since 〈·, ·〉 is invariant under G, so is 〈·, ·〉2.

(b) The first part holds since π(2) =

[
1 0
0 −1

]
also. We compute each π(g)∗Xπ(g):

π(0) = I, π(1) =

[
−1 0
0 −i

]
, π(2) =

[
1 0
0 −1

]
, π(3) =

[
−1 0
0 i

]
,

so
1

4

∑
g

π(g)∗Xπ(g) = X +

[
2 i
−i 2

]
+

[
2 −1
−1 2

]
+

[
2 −i
i 2

]
= 2I.

Since 〈·, ·〉 is invariant under G, so is 〈·, ·〉2.


