INTRO TO GROUP REPS - AUGUST 13, 2012
SOLUTION SET 10
RT8. FINITE GROUPS 2

1. Proof 1: Let W be an invariant subspace under 7/. Then 7'(g)w is in W for all w in
W and ¢ in G. By definition, 7/(g)w = m(gN)w, so W is invariant under 7. Since 7 is
irreducible, W is either 0 or V, and 7’ is irreducible.

Proof 2: Suppose A in Home(V,V) and commutes with each 7'(g). We show that A is
a scalar multiple of the identity on V. Since 7/(N) = 1,

m(gN)A = 7'(9)A = Ar'(g) = Arm(gN).

Since 7 is irreducible, A is a scalar by Schur’s Lemma, and the result follows from the
converse of Schur’s Lemma for 7.

Proof 3: We show that (x./, x./) = 1. By irreducibility, ZgNEG/N Ix=(gN)|> = |G/N]|.
First note that, since 7'(gn) = 7'(g),

X' (g) = er(gN)'

If we choose a set of representatives {¢'} for each coset in G/N, then each element of G
may be uniquely represented as some g'n with n in N. Thus

D @)= Ixalgm)P =INIY Ixa(g'N)I? = INI(G/N)) = |G.

geG neN g’

2. We use Fourier’s Trick with the character basis:

1 1
<667Xtriv> = 6(1 +0 +0) = 67
1 1
<€€7XSQ7L> = 6(1 +0 +0) = 67
(o xm) = ~(240+0) =2
€ s = = = o
67X 2 6 3
1 1 1
FT:e. = EXtm'v + Engn + §X7r27
1 1 1 1
Pl:> = — 4 — 4.
6 ~ 363609
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<€(12), Xtriv)

<6(12)a ngn>

L4340 =12
6 2

1 1
G0-3+0)=—,

1
(e(12)s Xma) g0+0+0)=0,
1 1
FT :eqg = §Xt7"iv - §X59n + 00Xy
1 1 1
PI-Z = Z4+Z40.
> ~ atat
1 1
(eqi23y, Xtriv) = —=(0+0+2) =,
6 3
1 1
<e(123)7XSgn> = 6(0+0+2) = g)
1 1
<e(123)7X7r2> = 6(0"‘0—2) = —g,
1 1 1
FT: = S Xtriv S Xsgn — 5 Xma
€(123) 3Xt + 3X g 3X )
1 1 1 1
PI-- = 4+ 242
3 9 + 9 + 9

3. First recall that x.(¢7!) = xx(g). For S,, the inverse of each permutation has the same
cycle structure and thus belongs to the same conjugacy class. Hence x.(g) = x(g71). For
Dy, a similar result holds by checking classes. For instance, when n is odd, the reflections,
all self-inverse, form a single class, and the nontrivial rotations pair into conjugacy classes
{r*k}.

To obtain non-real entries, we must have an = such that z=' belongs to a different
conjugacy class. Aside from abelian groups with elements with order greater than 2, see

also the semidirect product of Z/3 on Z/7 and SL(3,Z/2). This condition is not sufficient
as seen with A4 or As. (Next assignment.)

4. (a) Let {u;} be an orthonormal basis for V.
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<¢u,v7X7r> = Z<¢u,va¢ui,ui>

1
= a Zl:<u,uz><v,uz>
(u, Z(v,uﬁul)

7

&= 8-

(u,v)

Recall that dr¢yp * ¢y = (U, V' )dy . Then

dﬂ'¢u,v * Xw(g) = Z d7r¢u,1) * (z)ui,ui (g)
= 3, ) duenl9)

)

= Z(u, wi)(m(g)ui, v)

= (u,ﬂ(g)_lv) = ¢u,v(g)~

(b) It is enough to check on matrix coefficients, and we may further assume all belong
to the irreducible representation (7, V'). Then
dgr(¢u17v1 * ¢uz,v2) * ¢U3,U3 = d7r <IL1, U2>¢u2,v1 * ¢U37’U3 = <U1, U2><u2> U3>¢u3,v1 .

On the other hand,
dzr¢u1,v1 * (¢u2,v2 * ¢U3,’U3) = d7r¢u1,v1 * <U27 U3>¢U3,v2 = <u27 v3><u17 02>¢u3,v1'

(c) For the first part, it is enough to check when f is a matrix coefficient and h is a
character. By orthogonality, we may assume both belong to the irreducible representation
7. This follows from part (a). For the second part, we may assume f and h are irreducible
characters. By orthogonality, we may assume f = h = x, for irreducible 7. The result
follows from d;xr * Xz = Xr-

5. (a) There are |G| terms in the sum } Ixx(g)|? = |G|. Since xr(e) = dim (V) > 1, there
must be at least d2 — 1 zeros in the sum.

Characters of S, are always integer-valued, but the proof requires Galois theory.

(b) Straightforward check. The usual proof requires Galois theory.

6. (a) We use the formula for multiplicities n,s = (Xr@m, Xo')-
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S3 e (1) (12) (3) ] (123) (2)
Xtriv 1 1 1
Xsgn 1 -1 1
T 2 0 -1
TRT 4 0 1

Now nyprip = 1, nggn = 1, ngy = 1.
(b) With respect to the standard basis, we define 7 on generators as follows:

_1 V3 1 0
n(123)= | 2 2|, 77(23):[0 _1].
2

2

We use the orthonormal basis B® B = {e; ® e1,€1 ® ea,€2 ® e1,e2 @ e} for C?2®C2.
With respect to B ® B, we have matrices for generators:

1 V3 V3 3 1 0 00
(w®w)(123):i :ﬁ _é _i}’ g , (mem)((23) = 8 _é _? 8
3 V3 -3 1 0 0 01

In addition, 7(132) = 7(123)7, and 7(13) and 7(12) are computed from (13) = (23)(123)
and (12) = (23)(132).

We compute each projection operator

. ds
Pr = doo(Xa) = G 2 X (9)(r @ m)(g).
g

3 00 3 00 00 5 0 0 —3

0000 o L+ -1 0 L1
Ptriv— 00 0 ol Psgn— 0 _% ; ol 7P7r2— 0 g % 0

1 1

3 00 1% 0 0 00 -3 0 0 3

Note that each P2 =0, P = P*,Y. P =1, etc.
(c) Reading off the columns in part (b) and rescaling,
(1) Trivial: e; ® e1 + €3 ® ea,
(2) Sgn: e; ®eg —e2 @ ey,
(3) T e1®er —exaRer, €1 ey +e2Rey.
Note that these basis vectors are mutually orthogonal using the Hermitian inner product
on tensors.

7. (a) See Problem 8 for general proof. Here the trivial type occurs exactly once, and there
are two irreducible types, each occurring with multiplicity 1.

(b) n = 3 : Classes are represented by e, (12), (123) with fixed point counts 3, 1, 0. Thus
|G| =6=3+3(1) +0(2).
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= 4 : Classes are represented by e, (12),(123), (1234), (12)(34) with fixed point counts
4, , 1,0,0. Thus

G| =24 =4+ 6(2) + 1(4) + 6(0) + 3(0).

n =5 : Classes are represented by e, (12), (123), (1234), (12345), (12)(34), (123)(45) with
fixed point counts 5, 3, 2, 1, 0, 1, 0. Thus

|G| = 120 = 5 4 10(3) + 20(2) + 30(1) + 24(0) + 15(1) + 20(0).

8. (a) For each ¢ in G, x»(9) = f(g), the number of points fixed by g. We have also seen
that the multiplicity of the trivial representation in 7 is equal to the number of orbits in
X by G. A basis for the trivial types are given by {e(x)} where

e(r) = Z gx-

geG

X — <X7r7Xt7’w |G‘ ZXW ‘G’ Zf

Now

On the other hand,

Zn Xﬂ"XTI’ |G‘Z|Xﬂ' |G‘Zf

geG

(b) When n is odd, the identity has n fixed points, each rotation is fixed point free, and
each reflection has one fixed point. Thus

|G| =2n=n+0+n(1).

Comparing characters, all but one irreducible type occurs in 7 and each with multiplicity
1. Thus, if n =21+ 1,

I+ DG = (14+1)2n = (2l +2)n = (n + 1)n = n® + n(12).
When n is even, the identity has n fixed points and each rotation is fixed point free. For
reflections, half (type cr?*) have 2 fixed points, the others have none. Thus
|G| =2n=n+0+n/2(2)+n/2(0)

Comparing characters, all but two irreducible types occur in 7 and then with multiplicity
1. Thus, if n = 21,

(1+2)|G| = (14+2)2n = (21 +4)n = n® + 2n = n? + 0+ n/2(2%) + n/2(0).

9. We have seen that P,y = %Ml, where M is the n X n matrix consisting of all ones,
and Pn,1 =1- Ptriv-
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Each 7(g) is a permutation matrix; the (4, j)-th entry is 1 if g - j = ¢ and 0 otherwise.
For the trivial type, fixing i and j,

=YL o #g =i =)

g-j=t

Two cases for the irreducible representation of dimension n — 1: on and off the diagonal,
with ¢ # j,

n_lz(n—l)lZ(f(g)_l) or (n—l)!QZZf(g)

n n! 4~ —
g-i=1 g-r=1
=D Y (- o (-2)in-2)= Y flg),
g-j=i g-j=t

Worth noting: Neither the sgn or sgn ® m,_; types occur, so, for any i, j,

0= Z sgn(g) and 0= Z sgn(g)f(g)

g-j=t g-j=t

10. (a) We have that o(L(g1)f) = o(g1)o(f) and o(R(g2)f) = o(f)o(gy'). Thus
(L@ R)(g192)f) = o(g)o(f)olgz ") = 7 (g1, 92)0(f):

(b) (¢, Hom¢(Vy,V,)) is equivalent to the outer tensor product (6* ® o, V* ®@ V) as a
representation of G X GG. Since ¢ and ¢* are irreducible as representations of (G, so is the
outer tensor product as a representation of G x GG by Problem 11.

(c) The Hermitian inner product property is straightforward; if we choose an orthonormal
basis for V,, then the HIP is the usual inner product on C™. For invariance under G, we
invoke unitarity of o,

(5(91,92)T1,6(g1,92)To) = Trace(o(g1)Tio(g2)” ' (o(g1)Tao(g2) "))
= Trace(o(g1)Tio(g2) " (o(g2) ") T5o(g1)%)
(o(
(

Trace(o(g)TiTyo(g1) ™)
Trace(Th\Ty ) = (11, Ts).

(d) By Schur’s Lemma, each o(-) is either 0 or a nonzero multiple of the identity on each
M. Thus it is enough to test each irreducible character in the formula since x, is in M, .
Since X; = Xo and dUXU *Xo = Xo
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dy'Trace(o'(xo)o' (Xo)*) = dorTrace(o’(xo * X))
= Trace(o'(xo))

= ’é‘ > X (9)xo(9)

_J1 =7

|0 otherwise
Thus the right-hand side of the formula coincides with the left-hand side on each M,,. The
M,-spaces are also mutually orthogonal with respect to both inner products.

11. (a) Since our aim is a heuristic approach to tensors, we opt for an intuitive explanation
using coordinates.

We show that m @ 7’ is irreducible if 7 and 7’ are. Recall that
VeV = (VY @V = Home(V*, V).

Choosing orthonormal bases for V* and V’/, we may assume that we are working on a
vector space W of matrices and 7* and 7’ act by unitary matrices as follows:

(r @ 7') (g1, g2)M = 7'(g2) M7* (g7 ).

We show that any linear transformation A : W — W that commutes with 7* ® 7’ is a
multiple of the identity.

We note that any linear transformation A : W — W is of the form
ApcM = BMC,

where B and C are square matrices of the correct dimension; if M is m X n, then B is
m x m and C is n x n. Since W has dimension mn, Homc (W, W) has dimension m?>n?.
One sees that each such A is linear, and the span of all Ap ¢ has dimension m?n?.

Choose B, C nonzero and suppose Ap ¢ commutes with each 7 ® 7'(g1, g2). Then
Br'(g2)Mn* (g7 )C = 7'(g2) BMCn* (g7 ).
Set g1 = e. Then
Br'(g2)MC = 7'(g2)BMC.
Since C' is nonzero, we may choose M such that some column of MC' is nonzero. Then
B and 7* commute, and Schur’s Lemma implies B is a multiple of the identity. A similar

argument implies that C is a multiple of the identity. Hence Ap ¢ is a multiple of the
identity, and the converse of Schur’s Lemma implies 7 ® 7’ is irreducible.

We leave the other direction for an advanced class on tensors. The proof of the Schur
Orthogonality Relations requires only the above direction.
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(b) One sees immediately that W is a nonzero subrepresentation of M (n,C) under the
induced action by G x G. By part (a), M(n,C) is irreducible, and equality holds.

1

(¢) Note that w(e) = I and 7(c) = [O _1

Next note that

] , so the span contains all diagonal matrices.

0 -1 0 0
1 0} ’ m(r) = mler) =2 sin(2m/n)  cos(2mw/n)| "

Thus we are able to obtain all of M(2,C) using linear combinations of 7(g).

7w(r) — cos(2w/n)l = sin(2mw/n) {



