INTRO TO GROUP THEORY - FEB. 8, 2012 PROBLEM SET 1 - GT1. DEFINITION OF A GROUP

1. Determine whether the following are groups of not. Explain. If not, find a subset that is a group with the given group multiplication.

- (1) \mathbb{Z} under multiplication,
- (2) $\mathbb{Z}/6$ under multiplication, and
- (3) the nonzero reals with multiplication $a \circ b = |ab|$.

2. For the modular integer group $\mathbb{Z}/12$ under addition, list all elements, and find their inverses and orders (smallest positive multiple to get a multiple of 12).

3. In the symmetric group S_4 , compute

(1) (12)(124)(12),
 (2) (124)(13)(142), and
 (3) (14)(13)(12).

4. Compute the number of elements in S_5 . Find an element of order 6 in S_5 .

5. If p is a prime, define $(\mathbb{Z}/p)^*$ to be group with elements $\{1, 2, ..., p-1\}$ using clockwork multiplication. Find the inverses for each element in $(\mathbb{Z}/5)^*$ and $(\mathbb{Z}/7)^*$.

6. Solve the following equation for y in S_3 : (12)y(123) = (13).

7. Let S^1 be the unit circle in the complex plane \mathbb{C} . That is, S^1 consists of complex numbers z with |z| = 1. Show that S^1 is a group under complex multiplication. (Hint: Euler's Formula and trig identities)

8. Let $M_2(\mathbb{R})$ be the set of 2×2 matrices with real entries. Matrix multiplication is defined as follows as a row-column dot product:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}.$$

Consider the subset $G = GL(2,\mathbb{R})$ of $M_2(\mathbb{R})$ consisting of (invertible) matrices with $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \neq 0.$

(a) Show that det(AB) = det(A)det(B). Explain why this shows that G is closed under multiplication.

Date: February 7, 2012.

(b) Show that
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is an identity element in G .
(c) For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in G and $det(A) = D$, show that

$$A^{-1} = \begin{pmatrix} d/D & -b/D \\ -c/D & a/D \end{pmatrix}.$$

(Rule: ignoring D, "switch and negate" - switch the diagonal entries and negate the off-diagonal entries.)

(d) Derive the formula in (c) by solving the equation AB = I for B. What is $det(A^{-1})$? Is A^{-1} in G?

(e) Show that matrix multiplication is associative. (Tedious, but should be checked at least once.)

(f) Let
$$A = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$. Show that
(1) $AB \neq BA$,
(2) $(AB)^{-1} = B^{-1}A^{-1}$, and
(3) $(AB)^{-1} \neq A^{-1}B^{-1}$.

9. We can repeat the results in 8 by replacing \mathbb{R} with \mathbb{Z}/p , where p is a prime. This gives the group $G = GL(2, \mathbb{Z}/p)$. With p = 5, find the inverse of $A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}$. Verify your answer. (Hint: $\frac{1}{a} = a^{-1}$.)