INTRO TO GROUP THEORY - FEB. 15, 2012 PROBLEM SET 2 - GT2. DEFINITION OF SUBGROUP

1. We noted that if a group element x has finite order k, then $x^{-1} = x^{k-1}$. Find the order of the following group elements and verify directly.

(a) (1234) in
$$S_4$$
,

(b)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 in $GL(2, \mathbb{R})$, and
(c) $\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$ in $GL(2, \mathbb{Z}/3)$.

2. For $n \ge 0$, show that $n\mathbb{Z}$ is a cyclic subgroup of \mathbb{Z} . Show that all subgroups of \mathbb{Z} are of this form. (Hint: for any positive integers m, n, there exist integers x, y such that xm + yn = gcd(m, n).)

- 3. (a) Find all subgroups of Z/5, Z/7, and Z/12. (Hint: note that ⟨g⟩ = ⟨g⁻¹⟩.)
 (b) Find all subgroups of a cyclic group.
- 4. Find all (cyclic) subgroups of $(\mathbb{Z}/7)^*$ and $(\mathbb{Z}/11)^*$.

5. In the alternating group A_4 , compute (123)(124), and [(12)(34)](123). Verify that $H = \{e, (12)(34), (13)(24), (14)(23)\}$ is an abelian subgroup.

6. Count the number of rigid motions for regular dodecahedrons, icosahedrons, octahedrons, and cubes.

7. (a) Show that $S_3 = \langle (12), (123) \rangle$ and $S_3 = \langle (12), (23) \rangle$. (b) If H_i are subgroups of G, is $\cup H_i$ a subgroup of G?

8. Label a square's vertices 1(upper right) to 4 counter-clockwise. List all elements of D_8 , the symmetry group of the square, in cycle notation, and describe each symmetry geometrically. Find all orders and inverses.

9. D_8 has 5 subgroups with two elements and 3 subgroups with four elements. Describe each in cycle notation and geometrically. (Hint: the A_4 problem)

Date: February 10, 2012.

10. Recall the group $G = GL(2, \mathbb{R})$ consisting of real 2×2 invertible matrices.

(a) Show that $H = GL(2, \mathbb{Z})$ consisting of integral matrices (integers for entries) with integral inverses is a subgroup of G.

(b) What are the possible det(A) if A is in H? Show that this condition guarantees an integral inverse.