
INTRO TO GROUP THEORY - MAY 2, 2012

SOLUTION SET 13

GT21/22. INTERNAL PRODUCTS/ FINITE ABELIAN GROUPS

1. Order 12: See Problem 2.

Order 15: The Sylow subgroups are unique, so H3 and H5 intersect trivially, generate
G, and are both normal. Thus G ∼= Z/3× Z/5 ∼= Z/15.

Order 20: The Sylow 5-subgroup is unique and normal. If the Sylow 2-subgroup H2

is also unique, then G is abelian since all groups of order 4 are abelian and G is a direct
product of its Sylow subgroups. In this case, G is isomorphic to Z/20 or Z/2 × Z/10.
Otherwise there are five Sylow 2-subgroups H2. Since any H2 and H5 intersect trivially
and generate the group, we have a semidirect product and it is enough to consider non-
trivial homomorphisms from Z/4 or Z/2× Z/2 into Aut(Z/5) ∼= Z/4.

If we use the two automorphisms on Z/4 (corresponding to squaring or cubing in
Aut(Z/5)), we get the semidirect product y4 = e, x5 = e, yxy−1 = x2 (rep. x3) This
group is realized as the subgroup 〈(12345), (2354)〉 in S5 (resp. 〈(12345), (2453)〉). See
also the affine group Aff(Z/5). If we let z = y3, then G also satisfies the relations
z4 = e, x5 = e, zxz−1 = x3. Thus we obtain only one isomorphism class in this manner.
The order two automorphism yields the semidirect product

y4 = e, x5 = e, yxy−1 = x4.

Otherwise any nontrivial homomorphism from H2 = Z/2 × Z/2 into Z/4 will yield
Z/2 × D10

∼= D20. The kernel of this homomorphism has two elements, say {e, x}. To
finish, let c be another generator of H2 and r any generator of H5. For the isomorphism to
D20, use c and rx as generators.

Order 30: If we show that there exists a subgroup of order 15, then it is unique and
normal. Since there exists an element of order 2, we need to consider elements of order 2 in
Aut(Z/15) ∼= (Z/15)∗ ∼= Z/2× Z/4. There are four of these, and each lead to one of Z/30,
D30, S3 × Z/5, and Z/3 × D10. The non-abelian types can be distinguished by counting
elements of order 2.

Now there are either 1 or 6 Sylow 5-subgroups, but the Sylow 3-subgroup is unique and
normal. Thus there exists a subgroup of order 15.

Order 63: The Sylow 7-subgroup is unique and normal. If the Sylow 3-subgroup is also
unique, then G is isomorphic to either Z/3 × Z/21 or Z/63. Otherwise we consider non-
trivial homomorphisms from Z/9 or Z/3 × Z/3 into Aut(Z/7) ∼= Z/6. Now Z/6 contains
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a unique Z/3 subgroup, so we are essentially looking at the non-trivial automorphism of
Z/3. In the second case, we obtain Z/3×G21, where G21 is the non-abelian group of order
21 (unique up to isomorphism).

The first case is new; we have the relations y9 = e, x7 = e, yxy−1 = x2. The elements
of order 3 in Aut(Z/7) correspond to squaring and fourth powers. There are 7 Sylow 3-
subgroups H3, which give 7×φ(9) = 42 elements of order 9, and the normalizer of a Sylow
3-subgroup is itself. Since any group of order 9 is abelian, the normalizer of a three element
subgroup is either H3 or G itself. If H3, then each three element subgroup in a given H3

is distinct and there are 14 elements of order 3. By the relations, there exist elements
of order 21, and counting shows that the three element subgroup is unique and normal.
So G has e, six elements of order 7, 42 elements of order 9, two elements of order 3, and
φ(21) = 12 elements of order 21. The last count follows since G contains a unique cyclic
subgroup of order 21. Again we have only one isomorphism class since G also satisfies the
relations z9 = e, x7 = e, zxz−1 = x4 when z = y2.

2. We have seen five isomorphism classes so far: Z/12, Z/2 × Z/6, A4, D12, and the
semidirect product G12 described by the relations y4 = e, x3 = e, yxy−1 = x−1. These can
be distinguished by the abelian property and counting elements of order 4.

There are either 1 or 4 Sylow 3-subgroups. If four, there are 8 elements of order 3
and the Sylow 2-subgroup is unique and normal. Since any Sylow 3-subgroup and the
Sylow 2-subgroup generate G, G is a semidirect product of Z/3 and Z/2 × Z/2; since
Aut(Z/4) ∼= Z/2, the Sylow 2-subgroup is not Z/4. Note that conjugation permutes the
four Sylow 3-subgroups; if we check the Class Equation, the center of G is trivial, so
G ∼= A4, the unique subgroup of order 12 in S4.

If G contains only one Sylow 3-subgroup, it is normal. Thus G is a semidirect product
using either Z/4 or Z/2 × Z/2. If the Sylow 2-subgroup H2 is also unique, then G is
isomorphic to either Z/12 or Z/2 × Z/6. If not, we define the multiplication using non-
trivial homomorphisms from H2 into Aut(H3). When H2

∼= Z/4, we obtain G12, and, when
H2
∼= Z/2× Z/2, we obtain Z/2× S3 ∼= D12.

3. If G is non-abelian and q = pk + 1, then there exists a unique Sylow q-subgroup Hq

and k Sylow p-subgroups Hp. Since Hq and Hp generate G and intersect non-trivially,
G is a semidirect product of Z/p and Z/q. We have seen that this group is unique up to
isomorphism, and is the unique subgroup of order pq in Aff(Z/q). In this case, Z(G) = {e}.
If there were a non-trivial central element of order p or q, we could represent G as a direct
product of cyclic groups to find G abelian.

Otherwise G is abelian as a direct product of abelian groups and isomorphic to Z/pq.
Thus Z(G) = G.

4. Order 18: Sylow Theory shows that G has a subgroup H3 of order 9, which must be
normal by the Index Two Theorem. If H3

∼= Z/9, the G is isomorphic to Z/18 or D18
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(note that Aut(Z/9) ∼= Z/6). If H3
∼= Z/3×Z/3, then G is isomorphic to either Z/3×Z/6,

Z/3× S3, or a dihedral-like semidirect product

G18 = 〈y,H3〉 with y2 = e, yxy−1 = x−1 for x ∈ H3.

To distinguish the non-abelian types, count elements of order 6 or 9. For examples, note
the subgroup of S6 given by 〈(123), (456), (14)(25)(36)〉 ∼= Z/3 × S3 with 6 elements of
order 6. The subgroup of A6 given by 〈(123), (456), (12)(45)〉 is isomorphic to G18 with no
elements of order 6 or 9.

Order 24: There are 15 isomorphism classes, so a bit tedious. First suppose G has 4
Sylow 3-subgroups H3. Conjugation of these subgroups gives a non-trivial homomorphism
from G into S4. We show this kernel has at most 2 elements. If trivial then G ∼= S4; if
non-trivial, then there exists a normal subgroup with two elements and there exist elements
of order 6. We have seen that a group of order 24 with no element of order 6 is isomorphic
to S4.

Suppose x is in the normalizer of each H3. Since each N(H3) has 6 elements, the inter-
section of any two has at most 2 elements, and the assertion follows.

Suppose we have a normal subgroup H of order 2. H is contained in Z(G) by considering
conjugates. In turn, any central element would normalize the above subgroups, so H =
Z(G). We count 8 elements of order 3 and 8 elements of order 6, so the Sylow 2-subgroup
H2 is unique and normal. Since G is not a direct product of H3 and H2, Aut(H2) must
contain an element of order 3. The groups of order eight are of isomorphic to one of
Z/8, Z/2 × Z/4,Z/2 × Z/2 × Z/2, D8 or Q, the quaternion group. The only possibilities
are Z/2×Z/2×Z/2 and Q; the automorphism groups are isomorphic to SL(3,Z/2) (order
168) and S4 (order 24). In the first case, we obtain Z/2×A4, and, in the second, SL(2,Z/3).
(3 classes)

Suppose G has a unique Sylow 3-subgroup H3. Suppose H2 is cyclic of order 8. If H2

is unique, then G is isomorphic to Z/24. Otherwise G24 is the semidirect product defined
by the relations y8 = e, x3 = e, yxy−1 = x2. G24 has center 〈y2〉. Since there are 3 Sylow
2-subgroups, there are 3×φ(8) = 12 elements of order 8 of the form {yoddxi}. There are also
2 elements of order 4 of the form {y2, y6}, 4 elements of order 12 of the form {y2xi, y6xi},
and 2 elements of order 6 of the form {y4xi}. y4 is the unique element of order 2. (2 classes)

Suppose H2 is isomorphic to Z/2×Z/4. If H2 is unique, then G ∼= Z/2×Z/12. Otherwise
there are two non-trivial homomorphisms into Aut(Z/3) ∼= Z/2. Thus G is isomorphic to
either Z/4× S3 or Z/2×G12. To distinguish, the first type has elements of order 12 while
the second does not. (3 classes)

Suppose H2 is isomorphic to Z/2 × Z/2 × Z/2. Then G is isomorphic to either Z/2 ×
Z/2× Z/6 or Z/2× Z/2× S3 ∼= Z/2×D12. (2 classes)

Suppose H2 is isomorphic to D8. If H2 is unique, then G ∼= Z/3×D8. Otherwise there
are three homomorphisms from D8 to Aut(Z/3) with kernels R4, {e, (13), (24), (13)(24)},
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or {e, (12)(34), (14)(23), (13)(24)}. Since an automorphism interchanges the last two sub-
groups, we obtain only three classes in total, including D24. (3 classes)

Suppose H2 is isomorphic to Q. If unique, then G ∼= Z/3×Q. Otherwise each non-trivial
homomorphism from H2 to Aut(Z/3) has a cyclic subgroup of order 4 in its kernel, say 〈i〉,
and we have a semidirect product with relations x3 = e, ix = xi, jxj−1 = x−1. (2 classes)

Order 28: The Sylow 7-subgroup is unique and normal, and there are 1 or 7 Sylow
2-subgroups. In the first case, G is abelian and isomorphic to either Z/28 or Z/2× Z/14.
Otherwise G is a semidirect product, and we consider homomorphisms from Z/4 or Z/2×
Z/2 into Aut(Z/7) ∼= Z/6. The latter case gives Z/2×D14

∼= D28.

In the former case, we have the semidirect product G28 with relations

y4 = e, x7 = e, yxy−1 = x6.

The unique element of order 2 in Aut(Z/7) is multiplication by 6 = −1. Again we have a
cyclic subgroup 〈x, y2〉 of order 14. Since G has 7 Sylow 2-subgroups isomorphic to Z/4,
there are 7× 2 = 14 elements of order 4 of the form {yoddxi}. Note that

(yoddxi)4 = y4 odd = e.

5. First we count 48 = 3 × 16 elements. Since there exists an element of order 12 and
none of larger order, G is isomorphic to either Z/4 × Z/12 or Z/2 × Z/2 × Z/12. Since
there are three elements of order 2, FTFAG says there are at most 2 even factors. So
G ∼= Z/4× Z/12.

6. Order 16: Z/16, Z/8× Z/2,Z/4× Z/4,Z/4× Z/2× Z/2,Z/2× Z/2× Z/2× Z/2.

Order 200 = 8× 25: Z/200,Z/2× Z/100,Z/2× Z/2× Z/50,Z/2× Z/10× Z/10,
Z/5× Z/40,Z/10× Z/20.

To check, there are 6 total classes: 3 possible Sylow 2-subgroup and 2 possible Sylow
5-subgroups.

Order 360 = 5× 8× 9: Z/360,Z/2× Z/180,Z/2× Z/2× Z/90,Z/2× Z/6× Z/30,
Z/3× Z/120,Z/6× Z/60.

7. Aut(Z/48) ∼= (Z/48)∗ ∼= (Z/3× Z/16)∗ ∼= (Z/3)∗ × (Z/16)∗ ∼= Z/2× Z/2× Z/4.
Aut(Z/72) ∼= (Z/72)∗ ∼= (Z/8× Z/9)∗ ∼= (Z/8)∗ × (Z/9)∗ ∼= Z/2× Z/2× Z/6.
Aut(Z/100) ∼= (Z/100)∗ ∼= (Z/4× Z/25)∗ ∼= (Z/4)∗ × (Z/25)∗ ∼= Z/2× Z/20.

8. We’ve seen before that no n has φ(n) = 3. So n = 7, 9, 14, or 18. For the product of
two Z/6 factors, we can multiply these if relatively prime. So n = 63, 126. No n yields
three factors.

9. (a) Z/6 : 0 + 1 + 2 + 3 + 4 + 5 = 15 = 3,
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Z/7 : 15 + 6 = 21 = 0,
Z/2× Z/2 : (0, 0) + (1, 0) + (0, 1) + (1, 1) = (2, 2) = (0, 0),

Z/2× Z/4 : (0, 0) + (0, 1) + (0, 2) + (0, 3) + (1, 0) + (1, 1) + (1, 2) + (1, 3)

= (4, 12) = (0, 0).

(b) If G has odd order, then there are no elements of order 2 by Lagrange’s Theorem.
Thus every non-identity element occurs in an inverse pair, and these pairs cancel in the
sum. So the sum is the identity.

(c) If G has even order, part (b) still applies, but the sum now equals the sum of the
elements of order 2. With the identity, these elements form a subgroup isomorphic to a
product of Z/2 factors. If only one factor occurs, then the sum is the unique element of
order 2 in G; see Z/6. Otherwise the number of factors equals the number of even factors
using FTFAG. Inductively we see the sum over these is zero; if Sn−1 is the sum with n− 1
factors, then the new sum has two parts: (0, Sn−1) and (2n−1, Sn−1). See Z/2 × Z/2 and
Z/4× Z/2.

10. We can represent H = Z/2× Z/4 in terms of generators and relations as

y4 = e, x2 = e, xy = yx.

There are four elements of order 4 (y, y3, xy, xy3), three elements of order 2 (x, y2, xy2), and
the identity. An automorphism is determined on x and y; we may send y to any element
of order 4, but this choice eliminates the image of y2 from the possibilities for x. So there
are at most eight automorphisms, and it straightforward to check that each works. If one
enumerates these, there are 5 automorphisms of order 2, so the isomorphism class is D8.

11. (a) Note that many ideas from linear algebra apply here if we are careful with the zero
divisor 2. By definition, any automorphism π preserves the additive property:

π(g + h) = π(g) + π(h).

If we apply this repeatedly with g = h, we obtain the scalar property:

π(kg) = kπ(g), k ∈ Z/4.

So every automorphism corresponds to a Z/4-linear map, and, using the basis {(0, 1), (1, 0)},
we associate these maps with 2× 2 matrices with entries in Z/4.

Since the maps are invertible, the associated matrices are invertible. The usual equation
for classical adjoint applies here: A cl(A) = det(A)I. That is, A will have an inverse if and
only if det(A) 6= 0, 2. One can also check this directly using the formula for 2× 2 matrices.

(b) First we consider the elements of H. There are 12 twelve elements of order 4, three
elements of order 2, and the identity; the elements of order 4 have at least one coordinate
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equal to 1 or 3. The element of order 12 separate into three sets: each element of order
2 has exactly four square roots. For instance, (2, 0) is a square of (1, 0), (1, 2), (3, 0) and
(3, 2). Elements of G are determined on (1, 0) and (0, 1), both which have order 4. If
we assign (1, 0) to the order four element (a, b) then (2, 0) maps to (2a, 2b). Then (0, 1)
cannot be assigned to an element with square (2a, 2b), and there are at most 8× 12 = 96
automorphisms of H.

On the other hand, consider the usual group action of G on H as matrix-vector mul-
tiplication. We consider the orbit of e1 = (1, 0). We can carry e1 to any other element v
of order 4 by an element T of G; set T (e1) = v and T (e2) = e1 or e2, whichever makes
det(T ) = 1, 3. Thus the orbit of e1 has 12 elements. By observation, the stabilizer of e1 in

G is the set of upper triangular matrices of the form

(
1 a
0 b

)
, which has 8 elements. Thus

|G| = 8× 12 = 96.

(c) In H, the characteristic polynomials are of the form pA(x) = x2 + kx + 1 where
k = −tr(A) = 3tr(A). To count, we find centralizers of elements by solving AX = XA.

First consider pA(x) = x2 + 1. There is a single conjugacy class for this polynomial with
12 elements of order 4:

±
(

0 1
3 0

)
,±

(
1 3
2 3

)
,±

(
1 2
1 3

)
,±

(
2 3
1 2

)
,±

(
3 2
1 1

)
,±

(
1 1
2 3

)
.

Next we consider pA(x) = x2 + 3x+ 1. Again we have a single class with 8 elements of
order 6: (

0 1
3 1

)
,

(
1 3
1 0

)
,

(
3 1
1 2

)
,

(
2 3
3 3

)
,

(
2 1
1 3

)
,

(
3 3
3 2

)
,

(
1 1
3 0

)
,

(
0 3
1 1

)
.

To obtain the conjugacy class for pA(x) = x2 + x+ 1, we multiply the previous class by
3I to obtain 8 elements of order 3:(

0 3
1 3

)
,

(
3 1
3 0

)
,

(
1 3
3 2

)
,

(
2 1
1 1

)
,

(
2 3
3 1

)
,

(
1 1
1 2

)
,

(
3 3
1 0

)
,

(
0 1
3 3

)
.

For pA(x) = x2 + 2x + 1, we obtain five conjugacy classes: the two central classes
{I}, {3I}, and three classes with six elements of orders 2, 4, and 4. First the order 2 class:(

1 2
0 1

)
,

(
3 2
0 3

)
,

(
3 2
2 3

)
,

(
1 0
2 1

)
,

(
3 0
2 3

)
,

(
1 2
2 1

)
.

Then the two order 4 classes differ by multiplication by 3I :(
1 1
0 1

)
,

(
1 3
0 1

)
,

(
2 3
1 0

)
,

(
1 0
1 1

)
,

(
1 0
3 1

)
,

(
0 1
3 2

)
,
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and (
3 3
0 3

)
,

(
3 1
0 3

)
,

(
2 1
3 0

)
,

(
3 0
3 3

)
,

(
3 0
1 3

)
,

(
0 3
1 2

)
.

Summing we have 12 + 8 + 8 + 1 + 1 + 6 + 6 + 6 = 48.

(d) Now consider characteristic polynomials of the form pA(x) = x2 + kx + 3 with
k = −Tr(A) = 3Tr(A).

Both x2 + x + 3 and x2 + 3x + 3 contribute a single conjugacy class each with eight
elements of order 6, interchanged by multiplication by 3I:(

0 1
1 3

)
,

(
3 1
1 0

)
,

(
1 3
1 2

)
,

(
2 3
1 1

)
,

(
0 3
3 3

)
,

(
3 3
3 0

)
,

(
1 1
3 2

)
,

(
2 1
3 1

)
;(

1 1
1 0

)
,

(
0 1
1 1

)
,

(
2 3
1 3

)
,

(
3 3
1 2

)
,

(
1 3
3 0

)
,

(
0 3
3 1

)
,

(
2 1
3 3

)
,

(
3 1
3 2

)
.

Likewise pA(x) = x2 + 2x+ 3 contributes a single class of twelve elements of order 4:

±
(

0 1
1 2

)
,±

(
1 2
3 1

)
,±

(
1 2
1 1

)
,±

(
2 1
1 0

)
,±

(
1 3
2 1

)
,±

(
1 1
2 1

)
.

Finally pA(x) = x2 + 3 yields three classes of 2, 6, and 12 elements of order 2:

±
(

3 2
2 1

)
; ±

(
3 0
0 1

)
,±

(
3 2
1 0

)
,±

(
3 0
2 1

)
;

±
(

0 1
1 0

)
,±

(
1 3
0 3

)
,±

(
3 3
0 1

)
,±

(
1 0
3 3

)
,±

(
1 0
1 3

)
,±

(
2 3
3 2

)
.

(e) The order of H is 48 = 3×16. Counting elements of order 3 gives 4 Sylow 3-subgroups
H3
∼= Z/3. Counting elements of order 1, 2, and 4 gives 12+ 6 + 6 + 6 + 1 + 1 = 32

elements, so there must be 3 Sylow 2-subgroups of order 16. In this case, H2 = N(H2) is

isomorphic to Z/2 × Z/2 × Z/4. For instance, consider H2 = 〈
(
a b
0 a

)
,

(
1 2
2 1

)
〉. N(H3)

has 12 elements, including elements of order 4 and 6. Since there are no elements of order
12, N(H3) ∼= G12. In fact, the centralizer of H3 in H is cyclic with 6 elements and the
remaining elements have order 4.

Now 96 = 3× 32. Since G has the same number of element of order 3 as H, there are 4
Sylow 3-subgroups. There are 64 elements of order 1, 2, and 4, so again we have 3 Sylow
2-subgroups of order 32. Again H2 = N(H2) is isomorphic to Z/2×Z/2×D8, represented

by 〈
(
a b
0 c

)
,

(
1 2
2 1

)
〉.

N(H3) has 24 elements and its Sylow 3-subgroup is unique. A direct check shows that

the centralizer of H3 is isomorphic to Z/2× Z/6. Since

(
2 1
3 2

)
normalizes 〈

(
0 1
3 1

)
〉 but
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is not in its centralizer, N(H3) is the semidirect product with relations

y4 = e, x6 = e, yxy−1 = x−1.

Its Sylow 2-subgroup is isomorphic to Z/2× Z/4, and, from Problem 4, G ∼= Z/2×G12.

(f) Inn(H) ∼= H/Z(H) has 24 elements. We check for elements of order 6. Cubing any
element from the class of order 6 elements gives 3I, so there are no elements of order 6 in
the quotient, and Inn(H) ∼= S4.

12. No candidates arise checking isomorphism classes up to order 15. We consider groups
of order 16.

Consider G1 = Z/4× Z/4 and G2 = Z/2×Q. In both cases, there is an identity, three
elements of order 2, and twelve elements of order 4. These groups are not isomorphic since
G1 is abelian and G2 is not.


