
INTRO TO GROUP THEORY - MAR. 7, 2012

PROBLEM SET 5 - GT5/6/7. INDEX 2 THEOREM, ETC.

1. Consider the four diagonals {A,B,C,D} through antipodal vertices. We obtain the 6
four cycles by rotating about squares, which also give the 3 products of disjoint two cycles.
We obtain the 8 three cycles by rotating about vertices. We obtain the 6 two cycles by
rotating halfway in a plane that bisects the cube diagonally though four vertices. Note
that we can inscribe a pair of tetrahedra inside the cube by using diagonals on opposite
squares, rotated by half. The two and four cycles interchange the tetrahedra.

A4 consists of the identity, three cycles, and products of disjoint two cycles. These rigid
motions preserve the tetrahedra.

2. Let G be the dihedral group D2p with 2p elements. Let H = {e, c}. Since rcr−1 = cr−2,
H is not normal and [G : H] = p.

3. (a) D10: Rotations: e, (12345), (13524), (14253), (15432);

Reflections, each fixes a single vertex: (25)(34), (13)(45), (15)(24), (12)(35), (14)(23).

D16: Rotations: e, (12345678), (1357)(2468), (14725836),
(15)(26)(37)(48), (16385274), (1753)(2864), (18765432);

Reflections, fixing opposite vertices: (28)(37)(46), (13)(48)(57), (15)(24)(68), (15)(24)(68);

Reflections, fixing opposite edges: (12)(38)(47)(56), (23)(14)(58)(67),
(34)(25)(16)(78), (45)(36)(27)(18).

(b) D2n = 〈c, cr〉. No. In D16, 〈cr2, cr4〉 = 〈c, r2〉.

(c) Any reflection can be written in the form R =

(
cos(θ) sin(θ)
sin(θ) −cos(θ)

)
, which has eigen-

values ±1. Let v be a nonzero eigenvector with eigenvalue −1, and let v′ be a nonzero
eigenvector with eigenvalue 1. Since R is an orthogonal transformation, {v, v′} is an or-
thogonal basis for R2. Thus it is enough to check the formula on the basis:

sv(v) = v − 2
〈v, v〉
〈v, v〉

v = −v, sv(v
′) = v′ − 2

〈v′, v〉
〈v, v〉

v = v′.

Geometrically this fixes the line perpendicular to v and switches the direction of the line
along v through the origin. For R, the axis of reflection is along (cos(θ/2), sin(θ/2)); to see

Date: March 14, 2012.

1



2 PROBLEM SET 5 - GT5/6/7. INDEX 2 THEOREM, ETC.

this, we note that R switches e1 and Re1 so the half angle is fixed. This should be verified
using trig identities.

(d) Denote the rotation counter-clockwise by θ as r(θ). Note that cr(θ) is a reflection for
all θ; that is, cr(θ) is orthogonal, not a rotation, and

cr(θ)2 = cr(θ)cr(θ) = c2r(θ − θ) = e.

Now ccr(θ) = r(θ), so we obtain any rotation as a product of two reflections. Conversely,
the product of any two reflections is a rotation:

(cr(θ))(cr(θ′)) = c2r(−θ)r(θ′) = r(θ′ − θ).

4. (a) We verify the even case: In cycle notation,

(1) r = (123 . . . n),
(2) c = (1n)(2 n− 1)(3 n− 2) . . . (n/2 n/2 + 1), and

(3) rn/2 = (1 n/2 + 1)(2 n/2 + 2) . . . (n/2 n).

Since c and r generate D2n, it is enough to check

r[(1 n/2 + 1)(2 n/2 + 2) . . . (n/2 n)]r−1 = (1 n/2 + 1)(2 n/2 + 2) . . . (n/2 n)

and

c[(1 n/2 + 1)(2 n/2 + 2) . . . (n/2 n)]c = (1 n/2 + 1)(2 n/2 + 2) . . . (n/2 n).

If we verify that crc = r−1 in cycle notation, the old argument holds. This is straightfor-
ward.

(b) Consider D2n as matrices acting on R2. If x is in Z(D2n) then x commutes with every
element in the matrix span of D2n. Now the span contains I and diag(1,−1). It also
contains r − r−1, which is skew-symmetric, and cr − cr−1, which is symmetric. Thus the
span of D2n is all of M2(R), and the central elements must be multiples of the identity,
confirming the odd and even cases.

5. (a) Straightforward.

(b) Since A4 has no subgroups of order 6 and H ⊆ Z(H) in this case, |Z(H)| = 3, 12. Since
(12)(34) is not in Z(H), Z(H) = H. A similar argument shows Z(H) = H in S4. On the
other hand, N(H) is S3 since (12) is in N(H) and N(H) 6= A4.

In S5, we augment Z(H) and N(H) with the element (45). Now Z(H) is cyclic of order 6,
generated by (123)(45), and N(H) is S3 × Z/2, generated by (12) and (123)(45). In turn,
this group satisfies the relations for D12.

(c) Z(x) ⊆ N(H) is immediate. If h is in N(H), then heh−1 = e and hxh−1 = x. If not,
hxh−1 = e, but then x = e. Thus xh = hx and h is in Z(x).

6. Z/p,Z/2p, and Z/pq, respectively.

If G is abelian of order pq, then Lagrange’s Theorem restricts the orders of subgroups and
elements. Since there are nonidentity elements, there must be an element of order p, q, or
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pq. Suppose |x| = p, and H = 〈x〉. Then G/H has q elements, and we choose y in G such
that yH generates G/H. Now y has order pq or q since yq is in H and gcd(p, q) = 1. If pq,
G = 〈y〉, and G is cyclic. Otherwise consider the subgroup K = 〈x, y〉. Since pq divides
|K|, we have K = G. This means G = 〈xy〉 and G is cyclic of order pq.

7. Order 8: Z/2× Z/2× Z/2, Z/2× Z/4, Z/8.
Order 12: Z/2× Z/6, Z/12.

8. D10: the commutator subgroup consists of all rotations; in the abelianization, the cosets
correspond to rotation and reflection sets of elements.

D16: the commutator subgroup consists of all rotations by multiples of π2 ; in the abelian-

ization, the cosets correspond to the set of rotations r(kπ2 ), to the set of rotations r( (2k+1)π
4 ),

to the set of reflections with a fixed vertex pair, and to the set of reflections with a fixed
edge pair.

9. A4: for σωσ−1, the Conjugation Rule says to relabel using σ. Thus

(123)(124)(132)(142) = (234)(142) = (12)(34)

and

(12)(34)(123)(12)(34)(132) = (214)(132) = (13)(24).

This means H = [A4, A4] = {e, (12)(34), (13)(24), (14)(23)}, and the abelianization has
three elements, so Z/3.
S4: H is contained in [S4, S4]. Now

(12)(123)(12)(132) = (213)(132) = (123),

so A4 is contained in [S4, S4]. But [S4 : A4] = 2 and S4/A4 is abelian with two elements.
Thus A4 = [S4, S4], and the abelianization is Z/2. Note that this shows the quotient group
S4/H is S3, since Z/2 is the largest abelian quotient group of S4.

S5 : For now, brute force. We can augment the S4 result to obtain A5, the subgroup
consisting of (even) permutations with structure e, (abc), (ab)(cd), (abcde). A5 has 60 ele-
ments, so [S5 : A5] = 2. Later we will see that A5 has no proper normal subgroups; since
the commutator subgroup is normal, it must be all of A5.

10. (a) Since SO(2) is abelian, [SO(2), SO(2)] = {e}. In any commutator for O(2), the c
terms occur in pairs and cancel if present. Consider

[c, cr(θ)] = c(cr(θ))c(r(−θ)c) = r(2θ).

Thus [O(2), O(2)] = SO(2), and the abelianization is

O(2)/SO(2) = {SO(2), cSO(2)} ∼= Z/2.
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(b) The computations will be identical, save for position. We show the upper triangular
case. Then (

a b
0 c

)(
x y
0 z

)(
1/a −b/ac
0 1/c

)(
1/x −y/xz
0 1/z

)
=

(
1 d
0 1

)
,

where d can be any real number. In this case, G/[G,G] is the group R∗ × R∗; cosets are
represented by the diagonal matrices.

(c) Since det(ghg−1h−1) = 1, both commutator subgroups are contained in SL(2,R). If we
show [SL(2,R), SL(2,R)] = SL(2,R), the result also follows for GL(2,R).

Since every A in GL(2,R) factors as RU where R is in O(2) and U is upper-triangular, one
rechecks the argument to show that every A in SL(2,R) factors with R in SO(2) and U
upper-triangular with positive diagonal entries x and x−1. By (a) and (b), it is enough to
show that every diagonal matrix diag(x, x−1) with x > 0 is in the commutator. For a > 0,
we have (

a 0
0 1/a

)(
0 −1
1 0

)(
1/a 0
0 a

)(
0 1
−1 0

)
=

(
a2 0
0 1/a2

)
.

Thus the abelianization of SL(2,R) is trivial, and the abelianization of GL(2,R) is R∗;
cosets are represented by matrices diag(det(A), 1).


