
INTRO TO GROUP THEORY - MAR. 14, 2012

SOLUTION SET 6 - GT8/9. GROUP HOMOMORPHISMS AND

ISOMORPHISMS

1. (a) Closed under multiplication: if k = π(h) and k′ = π(h′), then

kk′ = π(h)π(h′) = π(hh′).

Since hh′ is in H, kk′ is in π(H).

Non-empty: eK = π(eH) is in π(H).

Closed under inverse: if k = π(h) then k−1 = π(h−1) is in π(H).

(b) Closed under multiplication: if g, g′ in π−1(H), then π(g) = h and π(g′) = h′, and
π(gg′) = π(g)π(g′) = hh′. Thus gg′ is in π−1(H).

Non-empty: π(eG) = eH , so eG is in π−1(H).

Closed under inversion: if π(g) = h, then π(g−1) = h−1. Thus g−1 is in π−1(H).

(c) Image: if N /G, then π(N) /K when π is onto, but not in general. Suppose h = π(g).
Then

hπ(N)h−1 = π(g)π(N)π(g−1) = π(gNg−1) = π(N).

If not, consider the inclusion of G = {e, (12)} into K = D8, the symmetry group of the
square. G is normal in itself, but not in D8.

Inverse image: π−1(N) is always normal if N /K. If h is in π−1(N), then π(h) = n and
knk−1 is in N. If g is in G, then π(ghg−1) = π(g)π(n)π(g)−1 is in N . Thus ghg−1 is in
π−1(N).

2. (a) The homomorphism is determined by π(1) and will preserve order of elements since
an isomorphism.

(1) π(1) = (1, 2),
(2) π(2) = (0, 4),
(3) π(3) = (1, 0),
(4) π(4) = (0, 2),
(5) π(5) = (1, 4), and
(6) π(6) = π(0) = (0, 0),

(b) Define a homomorphism π : Z→ Z/m× Z/n by π(1) = (1, 1).

For the homomorphism property, π(i+ j) = (i+ j, i+ j) = (i, i) + (j, j) = π(i) + π(j).

By 1(a), Im(π) is a subgroup of Z/m× Z/m. We count the number of elements in Im(π).
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If k is in Ker(π), then π(k) = (0, 0) and k is a multiple of both m and n. Since gcd(m,n) =
1, k is a multiple of mn. Conversely, any multiple of mn is in Ker(π). So Ker(π) = mnZ.
Since π maps Z onto Im(π), we have that Z/mnZ ∼= Im(π). See 6(a) below. Now the
quotient group is cyclic with mn elements, so π is onto, and the result follows.

3. If π(1) = z, then the order of z divides n. That is z = exp(k2πi/n) for some integer
0 ≤ k < n. If d = gcd(k, n), and Ker(π) = 〈n/d〉. Then Ker(π) has d elements and Im(π)
has n/d elements. (Note that since |z|k = 1, |z| = 1, and z is in S1 automatically.)

With Z, if Ker(π) = nZ, then we are in the first case. Otherwise Ker(π) = {0}, and π(1) is
an element of infinite order in S1. That is, π(1) = exp(x2πi) where x is irrational in [0, 1);
if x were rational, π(1) would have finite order.

4. (a) π(wz) = wnzn = π(w)π(z) for any w, z in S1. Ker(π) = {exp(k2πi/n)|0 ≤ k < n}.
If π is one-one, then Ker(π) = {1}, and n = ±1. These choices of n also guarantee onto.

(b) π(xy) = sgn(xy)|xy|s = sgn(x)sgn(y)|x|s|y|s = π(x)π(y).

If s = 0, n = 0, Ker(π) = R∗. If s = 0, n = 1, Ker(π) = {positive reals }. If n = 0, s 6= 0,
Ker(π) = {±1}. If n = 1, s 6= 0, then π is an isomorphism.

(c) π(wz) = |wz|s = |w|s|z|s = π(w)π(z).

If s = 0, then Ker(π) = C∗. Otherwise Ker(π) = S1; that is, all z such that |z|s = 1, or
|z| = 1.

(d) We note that det : GL(2,R)→ R∗ is a homomorphism, so we can compose with any
homomorphism from (b) to get another homomorphism. Kernels are GL(2,R), SL(2,R),
and {det(A) = ±1}, respectively.

5. Problem 3: n/d evenly spaced points on the circle, based at 1. Irrational x: the image
is a countable, dense subset of S1; that is, every point of the circle can be approximated
by points in the image.

Problem 4(a): S1 unless n = 0; 4(b): 1, {±1}, {postivie reals}, R∗; 4(c): {positive reals};
4(d): 1, R∗, {positive reals}.

6. (1) Note that π : G→ Im π is a surjective homomorphism. Then the First Isomorphism
Theorem follows from the theorem given in the video.

(2) Consider the natural map π : H/(H ∩N)→ HN/N defined by π(xH ∩N) = xN. Note
that xH ∩N ⊆ xN ⊆ HN.
We show the homomorphism, one-one, and onto properties. Suppose x, y are in H.

(1) Homomorphism: π(xH ∩N)π(yH ∩N) = xNyN = xyN = π(xyH ∩N).
(2) One-one: suppose π(xH ∩N) = π(yH ∩N). Then xN = yN, and x−1y is in N ∩H.

So xH ∩N = yH ∩N, and
(3) Onto: for any xH in HN/N , π(xH ∩N) = xN.
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(3) Normal: (gK)(hK)(g−1K) = ghg−1K = h′K for some h′ in K.

Isomorphism: First note that the coset of gK(H/K) in (G/K)/(H/K) is the set of K-
cosets {ghK} where h ranges over elements ofH. Consider the isomorphism π : (G/K)/(H/K)→
G/H defined by π(gK(H/K)) = gH = ∪ghK.
We show the homomorphism, one-one, and onto properties. Suppose x, y are in H.

(1) Homomorphism: π(xK(H/K))π(yK(H/K)) = xHyH = xyH = π(xyK(H/K)).
(2) One-one: suppose π(xK(H/K)) = π(yK(H/K)). Then xH = yH, and x−1y is in

H. So x−1yK(H/K) = {H/K}, and xK(H/K) = yK(H/K), and
(3) Onto: for any xH in G/H, π(xK(H/K)) = xH.

7. Since Im(π) ∼= G/Ker(π) is abelian, the commutator subgroup of G is contained in
Ker(π). (3) and (4) are difficult without the commutator.

(1) G = A4 : the commutator subgroup is H = {e, (12)(34), (13)(24), (14)(23)} and the
abelianization is G/H ∼= Z/3. Only 2 homomorphisms.

(2) G = S4 : the commutator subgroup is A4, and the abelianization is Z/2. Only 2
homomorphisms

(3) G = D2n : if n odd, the commutator subgroup is the rotation subgroup, and the
abelianization is Z/2. Only 2 homomorphisms. If n is even, the abelianization is
Z/2× Z/2. Only 5 homomorphisms, one for each subgroup of the quotient, and

(4) G = SL(2,R) : the commutator is G itself, so only the trivial homomorphism into
G/G, the one element group.

8. (a) Suppose G = 〈g〉. We show that H = 〈π(g)〉. If h is in H, then h = π(x) for some x
in G. But x = gk, so h = π(x) = π(gk) = [π(g)]k.

(b) Z/4 ∼= (Z/5)∗ = {1, 2, 3, 4} with generators 2 and 3. We can use 0, 1, 2, 3→ 1, 2, 4, 3
or 0, 1, 2, 3→ 1, 3, 4, 2.

Z/6 ∼= (Z/7)∗ = {1, 2, 3, 4, 5, 6} with generators 3 and 5. We can use 0, 1, 2, 3, 4, 5 →
1, 3, 2, 6, 4, 5 or 0, 1, 2, 3, 4, 5→ 1, 5, 4, 6, 2, 3.

9. (a) We can inscribe an icosahedron inside of a dodecahedron by placing the 12 vertices
at the center of each face.

(b) We can inscribe an octahedron inside a cube by placing the 6 vertices at the center
of each face.

10. If a group is defined through generators and relations, an isomorphism sends generators
to generators and preserves relations. Construct an isomorphism π : G→ D2n by defining

π

(
1 1
0 1

)
= r, π

(
−1 0
0 1

)
= c.

Then verify that
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(
1 1
0 1

)n

= I,

(
−1 0
0 1

)2

= I,

(
−1 0
0 1

)(
1 1
0 1

)(
−1 0
0 1

)
=

(
1 −1
0 1

)
.

Now π extends to elements of the form rk and crk using the homomorphism property.
Consistency of multiplication follows from the last relation.


